Core Module
Types
| Type | Description |
|
|
Functions and values
| Function or value |
Description
|
Full Usage:
acceptanceFromCounts accepts stepsPerParam
Parameters:
int[]
stepsPerParam : int<MeasureProduct<iteration, MeasureOne>>
Returns: float[]
|
|
Full Usage:
adaptiveStep sigmas acceptanceRates batchNumber
Parameters:
LogSigma[]
acceptanceRates : float[]
batchNumber : int<MeasureProduct<batch, MeasureOne>>
Returns: LogSigma[]
|
Adaptive tuning step. Tune variance of a parameter based on its acceptance rate. The magnitude of tuning reduces as more batches have been run.
|
Full Usage:
mhStep1D random domain f j lsj (theta, l)
Parameters:
Random
domain : Domain
f : TypedTensor<Vector, MeasureProduct<optim-space, MeasureOne>> -> TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
j : int
lsj : LogSigma
theta : Point
l : TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
Returns: Point * float<MeasureProduct<-logL, MeasureOne>> * bool
|
One MH step updating only coordinate j, returning accepted theta, -logL, and accepted flag.
|
Full Usage:
propose theta j lsj domain random
Parameters:
float<MeasureProduct<optim-space, MeasureOne>>[]
j : int
lsj : LogSigma
domain : Domain
random : Random
Returns: float<MeasureProduct<optim-space, MeasureOne>>[]
|
Propose a jump drawn from a Normal(0, exp(lsj)²) distribution, while leaving all but one parameter value fixed.
|
Full Usage:
runBatchMWG random domain f batchLength sigmas (theta, l)
Parameters:
Random
domain : Domain
f : TypedTensor<Vector, MeasureProduct<optim-space, MeasureOne>> -> TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
batchLength : int<'u>
sigmas : LogSigma[]
theta : Point
l : TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
Returns: Point * TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>> * int[] * (float<MeasureProduct<-logL, MeasureOne>> * Point) list
|
Run a batch of 'n' sweeps.
|
Full Usage:
sweepOnce random domain f sigmas (theta, l)
Parameters:
Random
domain : Domain
f : TypedTensor<Vector, MeasureProduct<optim-space, MeasureOne>> -> TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
sigmas : LogSigma[]
theta : Point
l : TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
Returns: Point * TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>> * int[] * (float<MeasureProduct<-logL, MeasureOne>> * Point) list
|
One full MWG sweep across all coordinates, cumulatively updating theta.
|
Full Usage:
trendCheckStep fullResults batchLength paramCount
Parameters:
Solution list
batchLength : int<MeasureProduct<iteration, MeasureOne>>
paramCount : int
Returns: (int * TrendResult) list
|
Trend check step (non‑adaptive) on the last five batches.
|
bristlecone