Header menu logo bristlecone

Core Module

Types

Type Description

TrendResult

Functions and values

Function or value Description

acceptanceFromCounts accepts stepsPerParam

Full Usage: acceptanceFromCounts accepts stepsPerParam

Parameters:
Returns: float[]
accepts : int[]
stepsPerParam : int<MeasureProduct<iteration, MeasureOne>>
Returns: float[]

adaptiveStep sigmas acceptanceRates batchNumber

Full Usage: adaptiveStep sigmas acceptanceRates batchNumber

Parameters:
Returns: LogSigma[]

Adaptive tuning step. Tune variance of a parameter based on its acceptance rate. The magnitude of tuning reduces as more batches have been run.

sigmas : LogSigma[]
acceptanceRates : float[]
batchNumber : int<MeasureProduct<batch, MeasureOne>>
Returns: LogSigma[]

mhStep1D random domain f j lsj (theta, l)

Full Usage: mhStep1D random domain f j lsj (theta, l)

Parameters:
Returns: Point * float<MeasureProduct<-logL, MeasureOne>> * bool

One MH step updating only coordinate j, returning accepted theta, -logL, and accepted flag.

random : Random
domain : Domain
f : TypedTensor<Vector, MeasureProduct<optim-space, MeasureOne>> -> TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
j : int
lsj : LogSigma
theta : Point
l : TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
Returns: Point * float<MeasureProduct<-logL, MeasureOne>> * bool

propose theta j lsj domain random

Full Usage: propose theta j lsj domain random

Parameters:
Returns: float<MeasureProduct<optim-space, MeasureOne>>[]

Propose a jump drawn from a Normal(0, exp(lsj)²) distribution, while leaving all but one parameter value fixed.

theta : float<MeasureProduct<optim-space, MeasureOne>>[]
j : int
lsj : LogSigma
domain : Domain
random : Random
Returns: float<MeasureProduct<optim-space, MeasureOne>>[]

runBatchMWG random domain f batchLength sigmas (theta, l)

Full Usage: runBatchMWG random domain f batchLength sigmas (theta, l)

Parameters:
Returns: Point * TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>> * int[] * (float<MeasureProduct<-logL, MeasureOne>> * Point) list

Run a batch of 'n' sweeps.

random : Random
domain : Domain
f : TypedTensor<Vector, MeasureProduct<optim-space, MeasureOne>> -> TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
batchLength : int<'u>
sigmas : LogSigma[]
theta : Point
l : TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
Returns: Point * TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>> * int[] * (float<MeasureProduct<-logL, MeasureOne>> * Point) list

One full MWG sweep across all coordinates, cumulatively updating theta.

random : Random
domain : Domain
f : TypedTensor<Vector, MeasureProduct<optim-space, MeasureOne>> -> TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
sigmas : LogSigma[]
theta : Point
l : TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
Returns: Point * TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>> * int[] * (float<MeasureProduct<-logL, MeasureOne>> * Point) list

trendCheckStep fullResults batchLength paramCount

Full Usage: trendCheckStep fullResults batchLength paramCount

Parameters:
Returns: (int * TrendResult) list

Trend check step (non‑adaptive) on the last five batches.

fullResults : Solution list
batchLength : int<MeasureProduct<iteration, MeasureOne>>
paramCount : int
Returns: (int * TrendResult) list

Type something to start searching.