Header menu logo bristlecone

MetropolisWithinGibbs Module

Types and nested modules

Type/Module Description

Core

LogSigma

Log of the standard deviation (unitless)

batch

Functions and values

Function or value Description

core isAdaptive writeOut random domain f results batchLength batchNumber theta sigmas

Full Usage: core isAdaptive writeOut random domain f results batchLength batchNumber theta sigmas

Parameters:
Returns: int<MeasureProduct<batch, MeasureOne>> * (float<MeasureProduct<-logL, MeasureOne>> * Point) list * LogSigma[]

Adaptive-metropolis-within-Gibbs algorithm, which can work in both adaptive and fixed modes. Adaptive mode: computes per‑parameter acceptance rates and tunes sigmas accordingly, repeating until all acceptance rates are in the target range. Non‑adaptive mode: checks for linear trends in parameter values over batches (via regression p‑values) and repeats until no significant trends remain.

isAdaptive : bool
writeOut : LogEvent -> unit
random : Random
domain : Domain
f : Point -> TypedTensor<Scalar, MeasureProduct<-logL, MeasureOne>>
results : Solution list
batchLength : int<MeasureProduct<iteration, MeasureOne>>
batchNumber : int<MeasureProduct<batch, MeasureOne>>
theta : Point
sigmas : LogSigma[]
Returns: int<MeasureProduct<batch, MeasureOne>> * (float<MeasureProduct<-logL, MeasureOne>> * Point) list * LogSigma[]

Type something to start searching.