Header menu logo bristlecone

TuningMode Module

Functions and values

Function or value Description

covariance tuneInterval weighting remaining history scale

Full Usage: covariance tuneInterval weighting remaining history scale

Parameters:
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>

Tune previously observed covariance based on most recent period. Works directly with the empirical covariance of the chain history.

tuneInterval : int<MeasureProduct<iteration, MeasureOne>>
weighting : float
remaining : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
scale : Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>

covarianceAllTime weighting history scale

Full Usage: covarianceAllTime weighting history scale

Parameters:
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>

Tune previously observed covariance based on all time

weighting : float
history : Solution seq
scale : Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>

covarianceFromBounds n domain random

Full Usage: covarianceFromBounds n domain random

Parameters:
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>

Generic unit-based covariance-from-bounds

n : int
domain : Domain
random : Random
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>

covarianceFromStandardDeviations n random sigmas

Full Usage: covarianceFromStandardDeviations n random sigmas

Parameters:
Returns: Matrix<float<MeasureProduct<MeasureProduct<'u, 'u>, MeasureOne>>>

Synthesises a full covariance matrix by drawing synthetic samples from marginal scales.

n : int
random : Random
sigmas : float<'u>[]
Returns: Matrix<float<MeasureProduct<MeasureProduct<'u, 'u>, MeasureOne>>>

covarianceOnly tuneInterval weighting remaining history (arg5, arg5)

Full Usage: covarianceOnly tuneInterval weighting remaining history (arg5, arg5)

Parameters:
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>> * 'a

defaultCovariance n

Full Usage: defaultCovariance n

Parameters:
    n : int

Returns: Matrix<float>

The starting covariance matrix for parameters in a multivariate distribution

n : int
Returns: Matrix<float>

dual tuneInterval weighting remaining history (arg5, arg5)

Full Usage: dual tuneInterval weighting remaining history (arg5, arg5)

Parameters:
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>> * float

dualTotalHistory tuneInterval weighting remaining history (arg5, arg5)

Full Usage: dualTotalHistory tuneInterval weighting remaining history (arg5, arg5)

Parameters:
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>> * float

none arg1 arg2 factors

Full Usage: none arg1 arg2 factors

Parameters:
    arg0 : 'a
    arg1 : 'b
    factors : 'c

Returns: 'c
arg0 : 'a
arg1 : 'b
factors : 'c
Returns: 'c

samplesToMatrix samples

Full Usage: samplesToMatrix samples

Parameters:
    samples : float<'u>[][]

Returns: Matrix<float<'u>>

Parameters to matrix

samples : float<'u>[][]
Returns: Matrix<float<'u>>

scaleFactor tuneInterval remainingIterations history scale

Full Usage: scaleFactor tuneInterval remainingIterations history scale

Parameters:
Returns: float

Modifies a scale factor

tuneInterval : int<MeasureProduct<iteration, MeasureOne>>
remainingIterations : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
scale : float
Returns: float

scaleOnly tuneInterval remaining history (arg4, arg4)

Full Usage: scaleOnly tuneInterval remaining history (arg4, arg4)

Parameters:
Returns: 'a * float
tuneInterval : int<MeasureProduct<iteration, MeasureOne>>
remaining : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
arg3 : 'a
arg4 : float
Returns: 'a * float

tuneCovariance weight recentCovariance oldCovariance

Full Usage: tuneCovariance weight recentCovariance oldCovariance

Parameters:
Returns: Matrix<float<'u>>

Tunes a covariance matrix based on recent samples. Blend two covariance matrices with a given weight. Works for any unit of measure 'u.

weight : float
recentCovariance : Matrix<float<'u>>
oldCovariance : Matrix<float<'u>>
Returns: Matrix<float<'u>>

tuneScale scale accRate

Full Usage: tuneScale scale accRate

Parameters:
    scale : float
    accRate : float

Returns: float

Find an appropriate scale factor for a standard deviation and its acceptance rate.

scale : float
accRate : float
Returns: float

Type something to start searching.