TuningMode Module
Functions and values
| Function or value |
Description
|
Full Usage:
covariance tuneInterval weighting remaining history scale
Parameters:
int<MeasureProduct<iteration, MeasureOne>>
weighting : float
remaining : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
scale : Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
|
Tune previously observed covariance based on most recent period. Works directly with the empirical covariance of the chain history.
|
Full Usage:
covarianceAllTime weighting history scale
Parameters:
float
history : Solution seq
scale : Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
|
Tune previously observed covariance based on all time
|
Full Usage:
covarianceFromBounds n domain random
Parameters: Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
|
Generic unit-based covariance-from-bounds
|
Full Usage:
covarianceFromStandardDeviations n random sigmas
Parameters: Returns: Matrix<float<MeasureProduct<MeasureProduct<'u, 'u>, MeasureOne>>>
|
Synthesises a full covariance matrix by drawing synthetic samples from marginal scales.
|
Full Usage:
covarianceOnly tuneInterval weighting remaining history (arg5, arg5)
Parameters:
int<MeasureProduct<iteration, MeasureOne>>
weighting : float
remaining : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
arg4 : Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
arg5 : 'a
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>> * 'a
|
|
|
The starting covariance matrix for parameters in a multivariate distribution
|
Full Usage:
dual tuneInterval weighting remaining history (arg5, arg5)
Parameters:
int<MeasureProduct<iteration, MeasureOne>>
weighting : float
remaining : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
arg4 : Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
arg5 : float
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>> * float
|
|
Full Usage:
dualTotalHistory tuneInterval weighting remaining history (arg5, arg5)
Parameters:
int<MeasureProduct<iteration, MeasureOne>>
weighting : float
remaining : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
arg4 : Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>>
arg5 : float
Returns: Matrix<float<MeasureProduct<MeasureProduct<optim-space, optim-space>, MeasureOne>>> * float
|
|
Full Usage:
none arg1 arg2 factors
Parameters:
'a
arg1 : 'b
factors : 'c
Returns: 'c
|
|
|
|
Full Usage:
scaleFactor tuneInterval remainingIterations history scale
Parameters:
int<MeasureProduct<iteration, MeasureOne>>
remainingIterations : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
scale : float
Returns: float
|
Modifies a scale factor
|
Full Usage:
scaleOnly tuneInterval remaining history (arg4, arg4)
Parameters:
int<MeasureProduct<iteration, MeasureOne>>
remaining : int<MeasureProduct<iteration, MeasureOne>>
history : Solution seq
arg3 : 'a
arg4 : float
Returns: 'a * float
|
|
Full Usage:
tuneScale scale accRate
Parameters:
float
accRate : float
Returns: float
|
Find an appropriate scale factor for a standard deviation and its acceptance rate.
|
bristlecone