Header menu logo bristlecone

ProfileLikelihood Module

Given a maximum likelihood estimate (MLE), the profile likelihood method runs a Monte Carlo algorithm that samples around the MLE.

The range for each parameter is discovered at 95% and 68% confidence based on a chi squared distribution.

Types and nested modules

Type/Module Description

CustomOptimisationMethod

EstimateFunction<'data, 'time, 'subject>

Functions and values

Function or value Description

interval nParam mle limit trace

Full Usage: interval nParam mle limit trace

Parameters:
    nParam : int
    mle : float
    limit : float
    trace : (float * float[]) list

Returns: (float * float)[]
nParam : int
mle : float
limit : float
trace : (float * float[]) list
Returns: (float * float)[]

profile fit engine subject hypothesis n result

Full Usage: profile fit engine subject hypothesis n result

Parameters:
Returns: Map<ShortCode, ConfidenceInterval>

The profile likelihood method samples the likelihood space around the Maximum Likelihood Estimate

fit : EstimationEngine<float, 'a> -> EndCondition<float> -> 'b -> ModelSystem -> EstimationResult
engine : EstimationEngine<float, 'a>
subject : 'b
hypothesis : ModelSystem
n : int
result : EstimationResult
Returns: Map<ShortCode, ConfidenceInterval>

Type something to start searching.